Testing the epidemic change in nearly nonstationary autoregressive processes
نویسندگان
چکیده
منابع مشابه
Nearly Nonstationary Arma Processes: Second Order Properties
Second order properties of nearly nonstationary ARMA processes are investigated in the cases when the autoregressive polynomial equation has (i) a real root close to 1; (ii) a real root close to -1; (iii) a pair of complex roots close to the unit circle. The effect of the closeness to the unit circle of the ARMA poles on its covariance and spectral density functions is considered. The obtained ...
متن کاملDissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes
This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...
متن کاملInconsistency of Bootstrap for Nonstationary, Vector Autoregressive Processes
Using a nonstationary, bivariate autoregressive process with iid innovations, this paper shows that the bootstrap vector autoregressive causality test is inconsistent in general in the sense that its weak limit is di¤erent from that of the original causality test.
متن کاملTesting and Modeling Threshold Autoregressive Processes
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملMarkovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Modelling and Control
سال: 2014
ISSN: 2335-8963,1392-5113
DOI: 10.15388/na.2014.1.5